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Abstract. The theory of effective Hamiltonians is well established. However, limitations 
appear in its applicability for many problems in molecular physics and quantum chemistry. 
The standard effective Hamiltonians may become strongly non-Hermitian when there is a 
large coupling between the model space, in which they are defined, and the outer space. 
Moreover, in the presence of intruder states, discontinuities appear in the matrix elements 
of these effective Hamiltonians as a function of the internuclear distances. To solve these 
difficulties, a new class of effective Hamiltonians (called intermediate Hamiltonians) is 
presented: only one part of their roots are exact eigen energies of the full Hamiltonian. 
The theory of these intermediate Hamiltonians is presented by means of a new wave- 
operator R which is the analogue of the wave-operator R in the theory of effective 
Hamiltonians. Solutions are obtained by a generalised degenerate perturbation theory 
(GDPT) and by iterative procedures. Two model systems are numerically solved which 
demonstrate the good convergence properties of GDFT with respect to standard degenerate 
perturbation theory (DPT). Continuity of the solutions is also checked in the presence of 
an intruder state. 

1. Introduction 

The effective Hamiltonian concept is a powerful tool for obtaining rigorous 
modelisation of complex problems in physics and quantum chemistry (see e.g. Brandow 
1977, KvasniEka 1977, Freed 1977, Maynau et a1 1983, Malrieu et a1 1984). An effective 
Hamiltonian (Bloch 1958, Lindgren and Morrison 1982) acts in a low "-dimensional 
model space spanned by an apriori selected set of useful configurations or determinants 
K .  The projection operator on the model space is 

where the set 1 K )  is an orthonormal basis. 

achieve two tasks: 
The Bloch effective Hamiltonian Ifeff, which is defined in the model space must 

(i)  the N,,, roots of Heff must be eigenvalues of the exact Hamiltonian H ;  
(ii) the corresponding eigenvectors must be the projections on the model space of 

the corresponding eigenvectors of H: 
" 

He,= 1 EmIlcImXlcIAI 
m = I  
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while 

HI 4,) = Em1 4,) and 14,) = POI 4,). 
The states 14,) are those having the largest components in the model space. The 14,) 
are the projections of in the model space and 16;) is the biorthogonal state of 
14,). The projected states I&,,) are usually non-orthogonal and the corresponding 
effective Hamiltonian is non-Hermitian (Bloch 1958). Hermitian effective Hamiltonians 
can be obtained by orthogonalising the projected states, for instance by the symmetric 

These two conditions fulfilled by the effective Hamiltonian are severe: once the 
model space has been chosen, the effective Hamiltonian carries the useful information 
without any significant degree of freedom. Various methods are available for building 
effective Hamiltonians. The most explicit ones are various versions of the well known 
degenerate or quasi degenerate perturbation theory: ( DPT and QDPT, respectively) 
(Bloch 1958, Brandow 1967, Lindgren 1974, Jlargensen 1975, Shavitt and Redmon 
1980). The effective Hamiltonian is obtained through recurrence equations and order- 
by-order expansions (see § 3). These perturbative algorithms face difficult convergence 
problems as soon as there is not a well defined energy gap between the zeroth-order 
energies of the model space and those of the complementary outer space. The coupling 
between the model space and the outer space may be too large with respect to the 
energy denominators and the series will diverge. Frequently this problem is linked to 
the appearance of an intruder state which turns out to be nearly degenerate with some 
states of the model space. 

These convergence difficulties may be overcome by using non-perturbative tech- 
niques (Suzuki and Lee 1980, Durand 1982, 1983). Starting from the Bloch equation 
Durand (1983) proposed a variational iterative scheme. Numerical tests (Maynau et 
a1 1983) have demonstrated the high convergence performances of this algorithm which 
is able to trace the roots having the largest components in the model space around a 
curve crossing associated with an intruder state. However, this success made visible 
a qualitative defect of the effective Hamiltonians for modelisation purposes where the 
transferability of effective interactions is looked for as will be exemplified in § 1 : the 
main difficulty consists in a discontinuity of the standard effective Hamiltonians around 
curve crossings which will make their use difficult for transfering effective interactions 
from small systems (diatomic molecules, for example) to larger systems (clusters of 
atoms, solids). 

The above discussion leads to a global criticism of the excessive ambition of the 
usual effective Hamiltonians which are supposed to bring exact information on all 
their eigenvectors and eigenvalues, while some basic vectors may be introduced in the 
model space only because of their large coupling with the most important vectors or 
for logical consistency reasons in view of transferability to larger systems. The eigenvec- 
tors having large components in the model space are not necessarily interesting from 
a physical point of view and § 2 will discuss an alternative strategy which consists in 
building new effective Hamiltonians (hereafter called intermediate Hamiltonians) 
which are spanned by a ( N , +  N,)-dimensional subspace but which only delivers N ,  
exact eigenvalues and the corresponding exact projections in the ( N ,  + Ni)-dimensional 
model subspace. The Ni remaining solutions of the intermediate Hamiltonian will not 
be directly related to exact solutions of the total Hamiltonian. The basic theory of 
intermediate Hamiltonians will be presented in § 4. The whole theory will be based 
on a new R wave-operator which plays the same role in the theory of intermediate 

transformation (des Cloizeaux 1960). 
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Hamiltonians as the usual wave-operator fl does in the theory of effective Hamiltonians. 
From the basic equation the derivation of the intermediate Hamiltonian will be given 
either by a GDPT or by efficient iterative procedures. 

Section 5 gives two numerical tests of the method. The convergence properties of 
GDPT with respect to standard DPT will be demonstrated on a meaningful model. A 
model of an avoided crossing between a vector of the intermediate space and a vector 
of the outer space will show that the matrix elements of the intermediate Hamiltonians 
are continuous functions of the interatomic distances while those of the effective 
Hamiltonians are discontinuous. A final discussion will provide a connection between 
the concept of intermediate Hamiltonians and previous attempts for building 'dressed' 
Hamiltonians. 

2. Defects of effective Hamiltonians or why does one need intermediate Hamiltonians 

Let us assume that one wants to derive from accurate ab initio calculations (for example 
on the molecule Liz) an effective Hamiltonian restricted to the valence model space. 
This model space will be defined from two orthogonal atomic orbitals a and b, one 
on each atom and looking like the 2s atomic orbitals of separated atoms and spanned 
by four determinants, two neutral determinants la61, Jbci and two ionic ones ladl and 
Ib61. The orbitals 1s are kept frozen or treated through a pseudopotential. The use of 
either the QDPT or an iterative procedure (Durand 1983) leads to a minimal basis set 
valence effective Hamiltonian, slightly non-Hermitian, the upper matrix elements of 
which are 

la61 l b4  ladl I b61 
EO Ka b Fa b Fa b 

Eo Fa b Fa b 

Eo+AE K h b  
E,+AE. 

The matrix elements of this four-dimensional effective Hamiltonian closely resemble 
those of the corresponding Hubbard (1963) and CNDO (Pople 1953, Pariser and Parr 
1963) semi-empirical Hamiltonians: 

One may be tempted to define the semi-empirical hopping integrals p p ,  as the Fock-like 
Fab terms of the aforementioned matrix and the bielectronic term from the energy 
difference AE between the neutral and ionic situations: 

U = A E  Y p p  - Y p q  = AE. 

Freed and coworkers (Freed 1974, Iwata and Freed 1974) have followed this promising 
way in trying to establish the theoretical foundations of semi-empirical methods in 
quantum chemistry, especially for 7~ systems of conjugated molecules and for deriving 
parameters such as Pp,, ypq, U from ab initio calculations (Iwata and Freed 1974, Lee 
and Freed 1983, Lee et a1 1983). 
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The diagonal term E may be defined from the energy of the unique triplet state 
3 +  Z, spanned by the model space 

E (3Zi) = Eo - K 

while the term A E  can easily be defined from the energy of the '2: singlet 2-"*[lad( - 
I b61] which is ionic in nature 

E ( ' Z : ) =  E , + A E - K ' .  

The exchange integrals K and K '  being rather small and almost equal one has 

A E  E ( ' Z : ) - E ( 3 Z : ) ,  

+ 
r 

Figure 1. Low-lying energies of the lowest P states of Liz as a function of the internuclear 
distance r (schematic). Full lines represent the three eigen energies of the valence effective 
Hamiltonian. 

Now if one examines the physical content of the interactions between the model 
space and the outer space one may notice that while at short interatomic distances 
(near the ground state equilibrium distance) the lowest '2: state is actually dominated 
by the valence ionic situations, for large interatomic distances, the lowest 'Z: is mainly 
neutral and involves one of the 2p, atomic orbitals z, and zb: 

A crossing occurs (figure 1 )  between these two 'Z: configurations since the ionic one 
dissociates into Li++ Li- at the energy I P -  EA (ionisation potential minus the electro- 
affinity of the atoms) while the other dissociate into Li(2p)+Li(Zs) which is much 
lower in energy. In the region of the curve crossing (Olson and Konowalow 1977, 
Konowalow and Olson 1979): 

(i)  the QDPT diverges, the neutral state made up of 2s and 2p orbitals on sites a 
and b acting as an intruder state; 

(ii) the use of an iterative procedure (Durand 1983) would lead to a discontinuous 
Hamiltonian (see figure 1 )  since one of its roots would jump in the region of the curve 
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crossing from the lowest 'Xi eigen energy of the exact problem at short distances to 
the second lowest eigenvalue 'X: at larger distances. The corresponding effective 
operators especially the AE term ( U  in the Hubbard formalism) or the hopping integral 
Fab (or p )  would be discontinuous functions of the interatomic distance r. This 
discontinuity is not unique since many other curve crossings occur between the ionic 
configuration 'Xi and other Rydberg configurations and between the ionic 'Xl state 
and Rydberg configurations of the same symmetry, each of them bringing a new 
discontinuity in the r dependence of the effective operators. These discontinuities are 
meaningless if one wants to investigate more complex systems, for example Li,, since 
in Li, the 2p or Rydberg-ionic crossing have no reason to take place at the same 
interatomic distance. Let us also note that the Rydberg states disappear in the central 
part of the cluster. Finally all this information is irrelevant for studying the ground 
state of a cluster and the related properties such as conformations and energies. One 
should be satisfied with some sort of effective (intermediate) Hamiltonian built on 
both neutral and ionic valence states which would give accurately the energy of the 
ground state and of the 'neutral' states in the sense of the valence bond theory while 
the ionic excited states could be approximately described. 

The preceding discussion shows that the usual effective Hamiltonians face two 
types of problems both qualitative (divergence of the perturbation expansion) and 
quantitative (discontinuities for a diatomic molecule in the r dependence of the effective 
operator) due to curve crossings between the model space configurations with intruder 
states belonging to the complementary or outer space. These defects are consequences 
of the effective Hamiltonians which requires that all their roots be exact eigenvalues 
of the full problem. This formidable task can only be achieved when the model space 
is energetically well separated from the outer space, in other cases the effective 
Hamiltonians appear as strongly non-Hermitian with awkward and meaningless 
discontinuities resulting in a poor transferability. These difficulties will be solved by 
the introduction of the new concept of intermediate Hamiltonian. The theory of the 
usual effective Hamiltonians will be recalled in § 2 and the theory of the new intermedi- 
ate Hamiltonians will be presented in § 3. 

3. Main results in the theory of effective Hamiltonians 

The vectorial space associated with the exact Hamiltonian H is partitioned into a 
N,-dimensional model subspace So and its orthogonal complement, the outer subspace 
S,'. The projectors associated with So and S,' are Po and Qo, respectively 

" 
Po= C Im)(ml, oo=C laHal, P,+Q,= 1. (1)  

m = l  (I 

Hereafter Latin and Greek letters will refer to the model and to the outer space, 
respectively. 

The most basic non-Hermitian effective Hamiltonian (figure 2) (Bloch 1958) is 
defined by 

is the wave-operator which obeys the intermediate normalisation: 

n = nP, = Po+ Qon. (3) 
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t 

The wave-operator R transforms the projected states Po$, which are solutions of He,  
back into the corresponding exact eigenstates 4, of H :  

flPoI$m) =RI$,)= l$m)* (4) 

f&HR= QORHR. ( 5 )  

The wave-operator obeys the operator equation 

Equation ( 5 )  can be solved by various iterative schemes (Durand 1983) or by the quasi 
degenerate perturbation theory (QDPT). In the latter case the exact Hamiltonian H is 
split into an unperturbed zeroth-order Hamiltonian Ho and a perturbation V 

where for sake of simplicity, we decided to choose Ho as degenerate in the model 
space, limiting the further expansion to the DPT. This is not an important restriction 
since it is always possible to partition H into Ho which is degenerate in the model 
space and the perturbation 

V =  H - Ho. (7)  

This definition of Ho implies that if XKzl Im)(mlHlm)(ml is not strictly degenerate 
then there will be non-zero diagonal matrix elements of V.  This choice of a degenerate 
unperturbed Hamiltonian in the model space greatly simplifies the perturbation 
expansions of R and HeR. These simplifications will also remain valid for the intermedi- 
ate Hamiltonians. 

The resolution of equation ( 5 )  by the DPT leads to the expansion 
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where 

The perturbation expansion of the effective Hamiltonian corresponding to fl is 
33 

He, = HL:) 

HIP,‘= PoHo 

Ha;) = Po VPo 

n = O  

* . .  
H::)= p o V ~ ‘ n - ’ ’ .  
. . .  

Expansion of He,  up to third order can be found in Lindgren (1982). 

4. Definition and theory of intermediate Hamiltonians 

4. I .  General equations 

Figure 3 gives an illustration of the main characteristics of an intermediate Hamiltonian. 
In contrast with usual effective Hamiltonians, an intermediate Hamiltonian denoted 
as fi has only N ,  exact eigenenergies and projected eigenvectors in the (N,+ 
Ni)-dimensional model space. In other words we accept that a non-zero part of the 
spectrum of 6 be only approximate solutions of H (see broken lines on figure 3). 

Let us first split the full basis set in which the exact Hamiltonian is initially given 
in three classes. 

The first class of vectors noted Im) the number of which is N,  defines the main 
model (sub)space S,. The projector on this space is 

A Hdf ib- exact  intermediate effect ive 

Figure 3. The exact Hamiltonian, the intermediate Hamiltonian fi and the effective 
Hamiltonian have the same eigen e?ergies in a stable subspace S and in the main model 
subspace, respectively. Moreover H has also approximate eigenvalues (broken lines) in 
the intermediate subspace. 
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A second class of Ni intermediate vectors denoted by Ii) span the intermediate 
(sub)space Si and the associated projector is 

1 = I  

The direct sum of the main model space and of the intermediate space characterises 
the full model space So = S,O Si. In the following this space will be called the model 
space. The intermediate Hamiltonian will also be defined in this model space corre- 
sponding to the projector 

The other vectors, denoted la), span the complementary or outer (sub)spaces Sk. The 
projector associated with S,' is 

We want to build an intermediate Hamiltonian fi restricted to the model space (the 
direct sum of the main model subspace and of the intermediate subspace). This 
( N ,  + Ni)-dimensional Hamiltonian should provide N ,  significant roots 

fi I 4,) = EmI  J m ) ,  HI +m) = &I +m), m = 1 , 2  . . .  N ,  (15) 

which should be exact eigenvalues of the exact Hamiltonian H. The Ni other eigen- 
values of fi should only be approximate eigenvalues of H. There is obviously a lot 
of freedom in this definition of the intermediate eigenfunctions 4,. It seems obvious 
that their components on the main model subspace should be identical to the projections 
P,+, of the exact solutions 9,. But one can ask more, namely that the components 
on the whole model space be also correct 

(16) 

This means that N ,  solutions of fi are the projection of N ,  exact solutions of H. 

Moving back to the spectral decomposition of fi it is clear that the above conditions 

14,) = ( p m  + Pi)I(Lm). 

This requirement is rather severe and was not compulsory. 

are not sufficient for defining it in a unique way 

since we have characterised neither the eigenstates $i which should have their largest 
components in the intermediate subspace nor their eigenvalues Ei. In (17) 6: and 4: 
are the biorthogonal vectors of J,,, and Gi in the model space. It is clear that in taking 
into account the various degrees of freedom for defining fi one can produce many 
varieties of intermediate Hamiltonians. In the present paper we will restrict ourselves 
to those intermediate Hamiltonians which are direct generalisations of the standard 
Bloch Hamiltonian. They can be written in the form: 

fi = PoHR, R = RPo. (18) 

Let us first recall that Po = P,  + Pi. The operator R looks like a wave-operator acting 
in the model space. The operator R is a nonorthogonal projector which obeys the 
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intermediate normalisation 

R’= R, R = Po+ QoR. (19) 

It can easily be shown from the above conditions that fi defined by (18) can be 
considered as an intermediate Hamiltonian if and only if the following conditions are 
fulfilled: 

RPol +m> = I m = 1 , 2  . . .  N,. (20) 

In (20) +, is an exact solution of H. These conditions mean that R transforms the 
projected states Po+,,, in the model space back to the exact solutions of H. Moreover 
it can immediately be checked that 

f ipo i  +m) = po~RpoI  +m) = POHI+,) = EmPoI +m) (21) 

which means that the Po+,’s are eigensolutions of fi with the exact energies E,. 
Conditions (20) can easily be transformed in a unique operator equation 

R R = R  (22) 

where R is the wave-operator associated with the Bloch effective Hamiltonian acting 
in the main model space 

He,= P m H R  (23) 

R = RP, = Pm+ (Pi + Qo)R (24) 

(Pi + 90) H R  = ( Pi + Qo)R HR. 

where 

obeys the wave-operator equation (Durand 1983) 

(25) 

Equation (22) is the basic equation of the theory of intermediate Hamiltonians. 
Multiplying both sides of (22) from the left by Qo and by taking into account the 
intermediate normalisation of R and SZ ((19) and (24)) gives 

(26) Qo R ( P, + Pi) (P, + Pin + QoR) = QOR. 

QoR(Pm+PiR)= Q&. (27) 

Figure 4 gives a matrix representation of equation (27) which clearly indicates the 
operators which are effectively involved in the operator equation RR = R (22). 

We finally obtain 

Equation (27) can also be written in the form 

QORP, = Qo( 1 - RPi)R. (28) 

_ _ _  

Figure 4. Matrix representation of the operators involved in the operator equation QoR 
x ( P o + P , R ) =  QoR (see (22), (271, (28)).  
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This expression indicates that the projection QoRPi of QoR on the right by Pi is 
completely arbitrary and that once QoRP, has been chosen, QoRPm is determined in 
a unique way from (28). The simplest choice is obviously 

QoRPi = 0 * QoRPm = QoR. (29) 

This choice provides a very simple intermediate Hamiltonian which has, however, the 
drawback of being non-Hermitian at second order in a perturbation series. It is more 
useful in view of building more Hermitian fi’s and transferable effective interactions 
to derive R from wave-operator-like equations. The simplest generalisation of the 
wave-operator equation (5)  appears to be 

Qo H R  = QoR HR. (30) 

In contrast with the wave-operator equation (25), equation (30) is linear in the unknown 
operator R. This linearity in R will be maintained for other equations that will be 
given below. As required, it can easily be shown (see appendix 2) that R as a solution 
of (30) fulfils the basic condition R R  = 0. It is useful to generalise (30) by introducing 
an arbitrary energy parameter E,: 

Qo(E0- H ) R  = QoR(E , -H)R .  (31) 

As previously one can show that R defined by (3 1 )  fulfils the condition RR = R. The 
operator R is now weakly Eo dependent and the value to be given to the parameter 
Eo will be discussed below. Multiplying both sides of (31) on the right by a, and 
using R2 = R and R R  = 0, leads also to 

QoHR = Q o R H R  (32) 
which is a projection on the left by Qo of the wave-operator equation (25). By taking 
into account the intermediate normalisation of R (19), equation (31) can be exactly 
solved: 

O0 
E , - ( l - R ) H  

[ H + R( Eo - H ) ]  Po. QoR = (33) 

Qo/ Eo - ( I  - R ) H  is the inverse of the operator Eo - ( 1 - O ) H  restricted to the outer 
space. For actual situations this operator cannot be directly inverted. Otherwise one 
does not need QoR but only its projection QoRPi on the right by Pi since the 
complementary operator QoRPm is then determined by (28). Multiplying both sides 
of (31) on the right by Pi provides an equation for QoRPi: 

(34) 
The linear equations (31) and (34) can easily be solved either by generalised Newton- 
Raphson methods similar to those that were previously derived for the wave-operator 
in the theory of effective Hamiltonians or by a direct generalisation of the quasi 
degenerate perturbation expansion. 

Qo( Eo - H ) R Pi = QoR( Eo - H ) RP;. 

4.2. Generalised degenerate perturbation theory ( G D P T )  

The exact Hamiltonian is split into an unperturbed zero-order Hamiltonian Ho and a 
perturbation V = H - Ho: 

N N 
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As previously in 0 2, it is assumed that Ho is degenerate in the main model subspace. 
For deriving compact expansions of R in powers of V which do  not imply Ho, Eo in 
(31) has to be identical to the Eo which appears in the expression (35) of Ho. Then 
(3 1 ) becomes 

Qo(E0- H ) R = Q & V R .  (36) 

This equation has a nice structure since Ho has disappeared on its right-hand side. It 
can also be written in the form 

QoR = ~ O0 ( 1 - 0 ) V R  
Eo - Ho 

which is suitable for a perturbation expansion: 

X 

R = c R ( " )  
f l = O  

R'O' = Po 

R"' = gVPo 

where 

(37) 

The expansion of the intermediate Hamiltonian ( 18) is obtained order-by-order from 
the expansion of R :  

n = o  

fi") = HoPo 

fii"' = Po VP, 

$ 2 )  = Po vg VPO 

Expansions of fi up to the fifth order can be found in appendix 1 

4.3. Relationships between H,  fi and He, 

Figure 5 shows how one can pass from the exact Hamiltonian H which is defined in 
the full vectorial space to the intermediate Hamiltonian defined in the model space 
and finally to the Bloch effective Hamiltonian which is restricted to the main model 
subspace. He, can be derived either from H or from fi by means of the wave-operators 
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U 

/ 
R'0,F.T 

decreasing 
order a t  
d imensionolity 

I J 
Herr 

Figure 5. The intermediate Hamiltonian f i  is derived from the exact Hamiltonian H by 
mean of the GDF The Bloch effective Hamiltonian can be determined either directly 
from H or fro? H by the standard QDPT. This scheme clearly indicates the intermediate 
character of H between and IfeR. H' is the exact effective Hamiltonian that could be 
defined in the full model space. 

fl and fi, respectively. 

The new wave-operator fi is solution of the equation 

The operator equation 

f l = R i i  (43) 

also illustrates how one can pass directly from the projected wavefunctions P,,,$,,, in 
the main model subspace back to exact solutions either directly by R or indirectly 
through an intermediate step corresponding to the product RR. 

5. Numerical applications 

The first comparative test between DF-T and GDPT was made on a real symmetric matrix 
with five vectors in the main model space ( N ,  = 5 ) ,  five vectors in the intermediate 
space ( N ,  = 5) and ten in the outer space ( N ,  = 10) for GDF-T and five vectors in the 
model space for DF-T. The matrix elements h, are defined by 

h,, = 1, ( 1  s i ~ 5 ) ,  h , - , , ,  =0.1, ( 2 s  i s 5 )  

h t , = 2 + & ( i - 6 ) ,  h,-5, ,  = 0.1 ( 6 s  i s  10) 

h,, = i - 8, 

The results in table 1 illustrate the better convergence of GDPT. The origin of this 
improvement is evident by looking at the perturbation expressions given in appendix 
1. The convergence rate is mainly determined by g, which involves the smallest 
denominators Eo- E :  (equation (A1.4)). In GDFT, terms implying g, appear at fourth 
order only. The convergence radius for GDF-T must however be the same as for DF-T, 
since the main equation determining the wave operator R implies the wave-operator 
fl of DIT. Nevertheless this advantage of better results at low orders is not negligible 
for the practical use of the theory. 

ht-1o.r = 0.1, h,-5,, = h,-I,, =O.S ( 1  1 s is 20). 
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In the second test, we used a model 3 by 3 matrix of the type: j+ 
a I I . x *  

In this example N ,  = Ni = N, = 1 and the convergence rate is directed by the ratio 
A /  1 or p / x ,  both for DPT (which reduces in that case to standard Rayleigh Schrodinger 
perturbation theory) and for GDFT. The convergence curves obtained with 0.1 S A 6 0.6, 
p = y = 0.1, and x = 1.1 are displayed in figure 6. 

Figure 6. Absolute value of error S =lE(A)-€'p'(A)l where € ( A )  is the exact eigenvalue 
and € ' p ' ( A )  the value obtained at order p either with DPT (broken lines) or with GPDT 
(full lines). A is the strength of the coupling between main model space and intermediate 
space. 

At a given order of perturbation, the error increases as a function of A are much 
more slower in GDPT. For instance at A = 0.3 the fourth order GDPT result is equivalent 
to the tenth order of DPT. Even for large A (0.5 s A S 0.6) for which divergences appear 
in both treatments (as expected) see preceeding paragraph) low orders of GDPT results 
are quite good, far better than DFT. The behaviour of the different orders of perturbation 
in GDPT is no longer regular for A > 0.35 where there is a crossing between the curves 
corresponding to orders 6 and 8. 

By varying x in the vicinity of 1, the same matrix may be used as a model for the 
intruder state situation discussed in detail in 5 2. Let us suppose that for physical 
reasons we want to build a 2 x 2  effective Hamiltonian on the first two basic states. 
The second root of the effective Hamiltonian corresponds to the second root of the 
3 x 3 matrix for x > 1 and to the third root for x < 1 .  The 2 x 2 effective Hamiltonian 
is discontinuous, and this discontinuity in the second root is reflected by a discontinuity 
in the extradiagonal elements and the second diagonal element. If we are interested 
in the first eigenstate and eigenvalue, built on two basic states, this discontinuity of 
the second root gives no useful information and introduces highly undesirable variations 
in the effective matrix elements. With GDFT algorithm, precise information on the 
second root is lost but no discontinuity appears in the matrix elements (see figure 7). 
All the elements of I? are smooth functions of x, well adapted to interpolation purposes. 
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Figure 7. ( a )  Variation of the intermediate Hamiltonian matrix eiements (it,), exact 
eigenvalues ( f l ,  t2) of H exact and second approximate eigenvalue of H (  t i ) .  ( b )  Variations 
of the effective Hamiltonian matrix elements (it,) and exact eigenvalues ( t l ,  tz, f3) of H 
exact. 

6. Conclusion 

The present work proposes a new class of effective operators which contains the usual 
effective operators as a special case. General wave operator equations have been 
derived, together with an order-by-order perturbative expansion, which contains the 
usual Rayleigh Schrodinger (quasi) degenerate perturbation theory as a particular case. 
The basic idea of our intermediate Hamiltonians is to be less ambitious than the 
traditional effective Hamiltonians which are asked to possess a maximal information 
on all their roots and eigenvectors. The present method rests on a partition of the 
model space into a main subspace (of dimension N,,,), bearing the larger components 
of the eigenvectors of physical interest, and an intermediate subspace (of dimension 
Ni), which is introduced for consistency reasons, or for its large interaction with the 
main subspace. The resulting intermediate Hamiltonians deliver N,,, exact roots and 
the corresponding eigenvectors are the projections of exact eigenvectors into the whole 
model space, the components on both the main and intermediate subspaces being 
exact. The Ni other roots, although they are not meaningless in most cases, are distorted 
with respect to the eigensolutions having their largest components into the intermediate 
subspace. 

Speaking in terms of dressed Hamiltonians, one may say that the intermediate 
vectors are dressed by their interaction with the outer space, but this dressing is not 
intended to give the corresponding eigenvectors, their dressing is simply performed to 
give the correct components of the N ,  vectors essentially spanned by the main model 
subspace on the intermediate subspace, as evident from the fact that if i and j are two 
vectors of the intermediate subspaces in the second order expression 

the energy denominators refer to the mean zeroth-order energy of the main vectors. 
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One may notice that this second-order expression is identical to the effective operator 
introduced by Davidson et a1 (Nitzsche et a1 1978, Davidson et a1 1981) under the 
name of 'shifted Bk approximation'. (This terminology refers to an early work by 
Gershgorn and Shavitt ( 1968), which proposes a specific approximation of the partition- 
ing technique; one should also mentioned Meyer (1971, 1973).) The shifted & 
approximation was limited to the second order and to a main subspace reduced to one 
vector. It has been introduced to maintain a good dependence of the ground state 
correlation energy on the number of particles, which is insured by the non-degenerate 
Rayleigh-Schrodinger perturbation theory, and which disappears in both the original 
Bk approximation (due to its Brillouin-Wigner structure) and in the usual QDFT at the 
same order, as demonstrated by Malrieu (1982) in a convincing model problem ( N  
non-interacting H2 molecules, in a minimal basis set, the model space consisting of 
the ground state configuration plus all doubly excited determinants). The present work 
extends Davidson's treatment to higher orders and to the simultaneous treatment of 
several states. Its relevance for C I  problems and for the search of the lowest solutions 
of Heisenberg Hamiltonians will be illustrated in the future. 

Its main goal is however different since it concerns the rigorous modelisation and 
the construction of transferable effective Hamiltonians though a careful extraction of 
information from high accuracy calculations on small molecules. This philosophy is 
well illustrated by the work of Freed and coworkers ( T  Hamiltonians, valence electron 
effective Hamiltonians) and by the work of our group on effective spin Hamiltonians; 
the expected conceptual advantages of our intermediate Hamiltonians are: 

( i )  a better continuity of the effective operators around the curve crossings between 
intermediate and outer vectors, as illustrated in a model calculation in the last section; 

(ii) a better hermiticity which will be documented in details on the derivation of 
effective magnetic Hamiltonians for (po1y)acetylenic systems. 

On a fundamental level, the field open by the present work deserves supplementary 
efforts : the above-proposed intermediate Hamiltonians are weakly energy dependent, 
since the Ni roots associated with the intermediate subspace depend on the chosen Eo 
value. This dependence will be studied in a further paper. The main problem concerns 
the possible variety of the intermediate Hamiltonians ; one type of intermediate Hamil- 
tonian has been proposed above, but other versions may certainly be derived, the 
relative advantages of which should be explored. 

As another extension, one should generalise our approaches to the cases where Ho 
is not taken as degenerate in the main model space, in order to build a generalised 
QDPT. This extension would lead to more complex formulae, but one should recall 
that the present algorithms are already able to treat quasi degenerate problems. 

Appendix 1. Generalised degenerate perturbation expansion (CDPT) of intermediate 
Hamiltonians 

The entire vectorial space is split into three parts: the main model subspace, the 
intermediate space and the outer space the projectors of which are P,, Pi,  Qo, 
respectively 
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P,+Pi+Qo=Po+Qo= I .  (A1.2) 

The unperturbed Hamiltonian, degenerate in the main model subspace, is denoted 

Two Green operators will appear in the expansions: 

CO fi= 1 fi(n) 

fi“) = PoHo 

n = O  

fii“’ = Po VP, 

fi(’) = Po vg VP, 

iF3) = Po[ vgvgv - vg2 VP, VIP, 

+ vg3 VP, VP, VI Po 

- Vg’V(g + gi)  V( g + gi)  VP, v - vgvg2 VP, vgv 

- vg * V( g + gi)  VP, vg v - vg VP, vg vg v + vg vg VP, VP, v 
+ v g 2 v ( g + g i ) 2 v P , v P , v +  V g 3 V ( g + g J  VP,VP,V 

+ vg* VP, vg’ VP, v+  vg3 VP, V(g  + gi) VP, v 
+ Vg3VPmVP,VgV- vg4vPmvP,vP,v]Po. 

fi(4) = Po[ vgvgvgv- vg vg’ VP, v - Vg2V(g + gi) VP, v - Vg’ VP, vgv 

W )  = Po[ vg vg vg vg v - vg vg Vg’ VP, v - vg Vg’ V( g + gi) VP, v 

(A1.3) 

(A1.4) 

(AIS)  

The DPT and the GDPT expansions have similar stuctures. Note that the reduced Green 
operator acting in the intermediate space (g , )  only appears at the fourth-order of 
perturbation. 

Appendix 2. Properties of the operator R 

R is assumed to be the solution of (30): 

Qo HR = QoR HR. (A2.1) 

By assuming the intermediate normalisation (19) 

R = P, + Pi + QOR, (A2.2) 

we will demonstrate that R as a solution of (A2.1) fulfils the basic relation R R = R  
(22). Multiplying both sides of (A2.1) on the right by R gives 

QoHRR = QoslHRsl. (A2.3) 
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(A2.2) and RQ= Q allows us to put RQ as 
RQ= ( Pm+ Pi+ QoR) (Pm+ Pin+ QoQ) = Pm+ Pin+ QoRQ. (A2.4) 

Then (A2.3) becomes 
QoH(P,+ P iQ+QoRR)=  QoQH(P,+PiQ+QORR).  (A2.5) 

Equation (A2.5) shows that QoRR is unique. The wave operator equation for Q 

QoHQ = QoQHQ (A2.6) 
can also be written in the form: 

Q , H ( P m + P i Q + Q o R ) =  QoQH(P,+ PiQ+Q,Q) .  (A2.7) 

The comparison of (A2.5) and (A2.7) finally leads to 
QoRQ = QoQ (A2.8) 

RQ = P,  + P,Q + QoRQ = P,  + Pin + QoQ = 0. (A2.9) 

It can also be shown by a similar demonstration that R as a solution of (32) also 
fulfills the condition RQ = Q. 
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